跳至内容

查询参数模型

如果您有一组相关的查询参数,您可以创建一个Pydantic 模型来声明它们。

这将允许您在多个位置重复使用模型,以及一次性声明所有参数的验证和元数据。 😎

注意

从 FastAPI 版本0.115.0开始支持此功能。 🤓

使用 Pydantic 模型的查询参数

Pydantic 模型中声明您需要的查询参数,然后将参数声明为Query

from typing import Annotated, Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query
from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Literal

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query
from typing import List

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Literal

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: List[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query

提示

如果可能,建议使用Annotated版本。

from typing import Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

提示

如果可能,建议使用Annotated版本。

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Literal

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

提示

如果可能,建议使用Annotated版本。

from typing import Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

FastAPI将从请求中的查询参数提取每个字段的数据,并为您提供您定义的 Pydantic 模型。

查看文档

您可以在 /docs 中的文档 UI 中查看查询参数

禁止额外的查询参数

在某些特殊用例中(可能不太常见),您可能希望限制要接收的查询参数。

您可以使用 Pydantic 的模型配置来禁止任何额外的字段

from typing import Annotated, Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query
from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Literal

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query
from typing import List

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Annotated, Literal

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: List[str] = []


@app.get("/items/")
async def read_items(filter_query: Annotated[FilterParams, Query()]):
    return filter_query

提示

如果可能,建议使用Annotated版本。

from typing import Literal

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

提示

如果可能,建议使用Annotated版本。

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Literal

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: list[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

提示

如果可能,建议使用Annotated版本。

from typing import List

from fastapi import FastAPI, Query
from pydantic import BaseModel, Field
from typing_extensions import Literal

app = FastAPI()


class FilterParams(BaseModel):
    model_config = {"extra": "forbid"}

    limit: int = Field(100, gt=0, le=100)
    offset: int = Field(0, ge=0)
    order_by: Literal["created_at", "updated_at"] = "created_at"
    tags: List[str] = []


@app.get("/items/")
async def read_items(filter_query: FilterParams = Query()):
    return filter_query

如果客户端尝试在查询参数中发送一些额外的数据,他们将收到错误响应。

例如,如果客户端尝试发送一个值为plumbustool查询参数,例如

https://example.com/items/?limit=10&tool=plumbus

他们将收到一个错误响应,告诉他们不允许使用查询参数tool

{
    "detail": [
        {
            "type": "extra_forbidden",
            "loc": ["query", "tool"],
            "msg": "Extra inputs are not permitted",
            "input": "plumbus"
        }
    ]
}

总结

您可以在FastAPI中使用Pydantic 模型来声明查询参数。 😎

提示

剧透警告:您还可以使用 Pydantic 模型来声明 Cookie 和标头,但您将在本教程的后面部分阅读到这些内容。 🤫