跳至内容

主体 - 嵌套模型

使用 FastAPI,您可以定义、验证、记录和使用任意深度嵌套的模型(感谢 Pydantic)。

列表字段

您可以将属性定义为子类型。例如,Python list

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: list = []


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: list = []


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

这将使 tags 成为一个列表,尽管它没有声明列表元素的类型。

带有类型参数的列表字段

但是 Python 有一种特定方法来声明带有内部类型的列表,或者说是“类型参数”。

导入 typing 的 List

在 Python 3.9 及更高版本中,您可以使用标准 list 来声明这些类型注释,正如我们将在下面看到的那样。💡

但在 Python 3.9 之前的版本(3.6 及更高版本)中,您首先需要从标准 Python 的 typing 模块导入 List

from typing import List, Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: List[str] = []


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

声明带有类型参数的 list

要声明具有类型参数(内部类型)的类型,例如 listdicttuple

  • 如果您使用的是 Python 3.9 之前的版本,请从 typing 模块导入它们的等效版本
  • 使用方括号将内部类型作为“类型参数”传递:[]

在 Python 3.9 中,将是

my_list: list[str]

在 Python 3.9 之前的版本中,将是

from typing import List

my_list: List[str]

这就是标准 Python 语法用于类型声明。

将相同的标准语法用于具有内部类型的模型属性。

因此,在我们的示例中,我们可以使 tags 特别地成为“字符串列表”。

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: list[str] = []


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: list[str] = []


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import List, Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: List[str] = []


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

设置类型

但随后我们仔细思考,意识到标签不应该重复,它们可能应该是唯一的字符串。

并且 Python 有一种特殊的数据类型用于唯一项的集合,即 set

然后我们可以将 tags 声明为字符串集

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: set[str] = set()


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: set[str] = set()


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Set, Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: Set[str] = set()


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

这样,即使您收到包含重复数据的请求,它也会被转换为唯一项的集合。

并且无论何时您输出该数据,即使源数据有重复项,它也会作为唯一项的集合输出。

并且它也会被相应地注释/记录。

嵌套模型

Pydantic 模型的每个属性都具有一个类型。

但该类型本身可以是另一个 Pydantic 模型。

因此,您可以声明具有特定属性名称、类型和验证的深度嵌套的 JSON“对象”。

所有这些,都是任意嵌套的。

定义子模型

例如,我们可以定义一个 Image 模型

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Image(BaseModel):
    url: str
    name: str


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: set[str] = set()
    image: Image | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Image(BaseModel):
    url: str
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: set[str] = set()
    image: Union[Image, None] = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Set, Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Image(BaseModel):
    url: str
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: Set[str] = set()
    image: Union[Image, None] = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

将子模型用作类型

然后我们可以将其用作属性的类型

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Image(BaseModel):
    url: str
    name: str


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: set[str] = set()
    image: Image | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Image(BaseModel):
    url: str
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: set[str] = set()
    image: Union[Image, None] = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Set, Union

from fastapi import FastAPI
from pydantic import BaseModel

app = FastAPI()


class Image(BaseModel):
    url: str
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: Set[str] = set()
    image: Union[Image, None] = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

这意味着 FastAPI 会期望一个类似于以下内容的正文

{
    "name": "Foo",
    "description": "The pretender",
    "price": 42.0,
    "tax": 3.2,
    "tags": ["rock", "metal", "bar"],
    "image": {
        "url": "http://example.com/baz.jpg",
        "name": "The Foo live"
    }
}

同样,仅仅进行这种声明,使用 FastAPI,您就可以得到

  • 编辑器支持(自动补全等),即使对于嵌套模型也是如此
  • 数据转换
  • 数据验证
  • 自动文档

特殊类型和验证

除了像 strintfloat 等普通的单一类型外,您还可以使用从 str 继承的更复杂的单一类型。

要查看您拥有的所有选项,请查看 Pydantic 的类型概述。您将在下一章中看到一些示例。

例如,正如我们在 Image 模型中有一个 url 字段,我们可以将其声明为 Pydantic 的 HttpUrl 的实例,而不是 str

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: set[str] = set()
    image: Image | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Union

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: set[str] = set()
    image: Union[Image, None] = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Set, Union

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: Set[str] = set()
    image: Union[Image, None] = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

字符串将被检查以确保它是有效的 URL,并在 JSON Schema / OpenAPI 中进行记录。

包含子模型列表的属性

您也可以使用 Pydantic 模型作为 listset 等的子类型。

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: set[str] = set()
    images: list[Image] | None = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import Union

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: set[str] = set()
    images: Union[list[Image], None] = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results
from typing import List, Set, Union

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: Set[str] = set()
    images: Union[List[Image], None] = None


@app.put("/items/{item_id}")
async def update_item(item_id: int, item: Item):
    results = {"item_id": item_id, "item": item}
    return results

这将期望(转换、验证、记录等)一个类似 JSON 的主体

{
    "name": "Foo",
    "description": "The pretender",
    "price": 42.0,
    "tax": 3.2,
    "tags": [
        "rock",
        "metal",
        "bar"
    ],
    "images": [
        {
            "url": "http://example.com/baz.jpg",
            "name": "The Foo live"
        },
        {
            "url": "http://example.com/dave.jpg",
            "name": "The Baz"
        }
    ]
}

信息

请注意,images 键现在包含一个图像对象列表。

深度嵌套的模型

您可以定义任意深度嵌套的模型

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None
    tags: set[str] = set()
    images: list[Image] | None = None


class Offer(BaseModel):
    name: str
    description: str | None = None
    price: float
    items: list[Item]


@app.post("/offers/")
async def create_offer(offer: Offer):
    return offer
from typing import Union

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: set[str] = set()
    images: Union[list[Image], None] = None


class Offer(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    items: list[Item]


@app.post("/offers/")
async def create_offer(offer: Offer):
    return offer
from typing import List, Set, Union

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


class Item(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    tax: Union[float, None] = None
    tags: Set[str] = set()
    images: Union[List[Image], None] = None


class Offer(BaseModel):
    name: str
    description: Union[str, None] = None
    price: float
    items: List[Item]


@app.post("/offers/")
async def create_offer(offer: Offer):
    return offer

信息

请注意,Offer 包含一个 Item 列表,而 Item 又包含一个可选的 Image 列表。

纯列表的主体

如果期望的 JSON 主体顶层值为 JSON array(Python list),则可以在函数参数中声明类型,与 Pydantic 模型中的声明方式相同

images: List[Image]

或者在 Python 3.9 及更高版本中

images: list[Image]

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


@app.post("/images/multiple/")
async def create_multiple_images(images: list[Image]):
    return images
from typing import List

from fastapi import FastAPI
from pydantic import BaseModel, HttpUrl

app = FastAPI()


class Image(BaseModel):
    url: HttpUrl
    name: str


@app.post("/images/multiple/")
async def create_multiple_images(images: List[Image]):
    return images

无处不在的编辑器支持

您将获得无处不在的编辑器支持。

即使对于列表中的项目

如果您直接使用 dict 而不是 Pydantic 模型,则无法获得这种编辑器支持。

但是您也不必担心它们,传入的字典会自动转换,您的输出也会自动转换为 JSON。

任意 dict 的主体

您还可以将主体声明为一个 dict,其中键为某种类型,值则为另一种类型。

这样,您就不必事先知道有效的字段/属性名称(与 Pydantic 模型不同)。

如果您想要接收尚不知道的键,这将很有用。


另一个有用的情况是,当您想要使用其他类型的键(例如 int)时。

这就是我们将在本文中看到的。

在这种情况下,只要 dict 具有 int 键和 float 值,您就可以接受任何 dict

from fastapi import FastAPI

app = FastAPI()


@app.post("/index-weights/")
async def create_index_weights(weights: dict[int, float]):
    return weights
from typing import Dict

from fastapi import FastAPI

app = FastAPI()


@app.post("/index-weights/")
async def create_index_weights(weights: Dict[int, float]):
    return weights

提示

请记住,JSON 仅支持 str 作为键。

但是 Pydantic 具有自动数据转换功能。

这意味着,即使您的 API 客户端只能发送字符串作为键,只要这些字符串包含纯整数,Pydantic 就会转换并验证它们。

您收到的 weights dict 实际上将具有 int 键和 float 值。

回顾

使用 FastAPI,您可以获得 Pydantic 模型提供的最大灵活性,同时保持代码简洁、短小且优雅。

但所有这些都有优势

  • 编辑器支持(无处不在的代码补全!)
  • 数据转换(又称解析/序列化)
  • 数据验证
  • 架构文档
  • 自动文档